1,797 research outputs found

    Radio Resource Management for Wireless Mesh Networks Supporting Heterogeneous Traffic

    Get PDF
    Wireless mesh networking has emerged as a promising technology for future broadband wireless access, providing a viable and economical solution for both peer-to-peer applications and Internet access. The success of wireless mesh networks (WMNs) is highly contingent on effective radio resource management. In conventional wireless networks, system throughput is usually a common performance metric. However, next-generation broadband wireless access networks including WMNs are anticipated to support multimedia traffic (e.g., voice, video, and data traffic). With heterogeneous traffic, quality-of-service (QoS) provisioning and fairness support are also imperative. Recently, wireless mesh networking for suburban/rural residential areas has been attracting a plethora of attentions from industry and academia. With austere suburban and rural networking environments, multi-hop communications with decentralized resource allocation are preferred. In WMNs without powerful centralized control, simple yet effective resource allocation approaches are desired for the sake of system performance melioration. In this dissertation, we conduct a comprehensive research study on the topic of radio resource management for WMNs supporting multimedia traffic. In specific, this dissertation is intended to shed light on how to effectively and efficiently manage a WMN for suburban/rural residential areas, provide users with high-speed wireless access, support the QoS of multimedia applications, and improve spectrum utilization by means of novel radio resource allocation. As such, five important resource allocation problems for WMNs are addressed, and our research accomplishments are briefly outlined as follows: Firstly, we propose a novel node clustering algorithm with effective subcarrier allocation for WMNs. The proposed node clustering algorithm is QoS-aware, and the subcarrier allocation is optimality-driven and can be performed in a decentralized manner. Simulation results show that, compared to a conventional conflict-graph approach, our proposed approach effectively fosters frequency reuse, thereby improving system performance; Secondly, we propose three approaches for joint power-frequency-time resource allocation. Simulation results show that all of the proposed approaches are effective in provisioning packet-level QoS over their conventional resource allocation counterparts. Our proposed approaches are of low complexity, leading to preferred candidates for practical implementation; Thirdly, to further enhance system performance, we propose two low-complexity node cooperative resource allocation approaches for WMNs with partner selection/allocation. Simulation results show that, with beneficial node cooperation, both proposed approaches are promising in supporting QoS and elevating system throughput over their non-cooperative counterparts; Fourthly, to further utilize the temporarily available radio spectrum, we propose a simple channel sensing order for unlicensed secondary users. By sensing the channels according to the descending order of their achievable rates, we prove that a secondary user should stop at the first sensed free channel for the sake of optimality; and Lastly, we derive a unified optimization framework to effectively attain different degrees of performance tradeoff between throughput and fairness with QoS support. By introducing a bargaining floor, the optimal tradeoff curve between system throughput and fairness can be obtained by solving the proposed optimization problem iteratively

    Hybrid endovascular operation for ruptured thoracic aortic aneurysm

    Get PDF
    The rupture of a thoracic aortic aneurysm is a life-threatening emergency. Conventional open surgical repair carries a high mortality and morbidity. We report an elderly patient who suffered from rupture of a proximal descending thoracic aortic aneurysm close to the aortic arch. A hybrid operation consisting of a right-to-left carotid bypass followed by endovascular repair of the descending thoracic aorta was carried out. The patient recovered uneventfully. A hybrid endovascular repair should be considered the treatment of choice for rupture of a thoracic aortic aneurysm near the arch.published_or_final_versio

    Ionizing radiation absorption of vascular surgeons during endovascular procedures

    Get PDF
    ObjectiveEndovascular procedures have become an integral part of a vascular surgeon’s practice. The exposure of surgeons to ionizing radiation and other safety issues have not been well studied. We investigated the radiation exposure of a team of vascular surgeons in an active endovascular unit and compared yearly dosages absorbed by various body parts among different surgeons. Patients’ radiation exposure was also assessed.MethodsThe radiation absorption of a team of vascular surgeons was prospectively monitored in a 12-month period. During each endovascular procedure, the effective body, eye, and hand radiation doses of all participating surgeons were measured by mini-thermoluminescent dosimeters (TLD) attached at the chest level under a lead apron, at the forehead at eye level, and at the hand. The type of procedure, fluoroscopy machine, fluoroscopy time, and personal and operating theatre radiation protection devices used in each procedure were also recorded. One TLD was attached to the patient’s body near the operative site to measure the patient’s dose. The yearly effective body, eye, and hand dose were compared with the safety limits of radiation for occupational exposure recommended by the International Commission on Radiation Protection (ICRP). The radiation absorption of various body parts per minute of fluoroscopy was compared among different surgeons.ResultsA total of 149 consecutive endovascular procedures were performed, including 30 endovascular aortic repairs (EVAR), 58 arteriograms with and without embolization (AGM), and 61 percutaneous transluminal angioplasty and stent (PTA/S) procedures. The cumulative fluoroscopy time was 1132 minutes. The median yearly effective body, eye, and hand dose for the surgeons were 0.20 mSv (range, 0.13 to 0.27 mSv), 0.19 mSv (range, 0.10 to 0.33 mSv) and 0.99 mSv (0.29 to 1.84 mSv) respectively, which were well below the safety limits of the ICRP. The mean body, eye, and hand dose of the chief surgeon per procedure were highest for EVAR. A significant discrepancy was observed for the average hand dose per minute of fluoroscopy among different surgeons. The mean radiation absorption of patients who underwent EVAR, AGM, and PTA/S was 12.7 mSv, 13.6 mSv, and 3.4 mSv, respectively.ConclusionWith current radiation protection practice, the radiation absorbed by vascular surgeons with a high endovascular workload did not exceed the safety limits recommended by ICRP. Variations in practice, however, can result in significant discrepancy of radiation absorption between surgeons

    Carbon Dioxide Angiography in Lower Limbs: A Prospective Comparative Study With Selective Iodinated Contrast Angiography

    Get PDF
    This was a prospective comparison of the accuracy and image quality of carbon dioxide digital subtraction angiography (CO2 DSA) and iodinated contrast digital subtraction angiography (ICDSA) in evaluating lower extremity arteries and patient tolerance of the procedures. Selective DSA was performed in 14 Taiwanese patients who were diagnosed with peripheral artery occlusive disease (PAOD). Both contrast materials were administered through mechanical injectors. Post-processing of the image used pixel shifting. Images of vessels were divided into 22 anatomic segments and evaluated by two experienced radiologists. A four-point scale was used to classify diseased vessels. Two interpreters rated the CO2 DSA image against the ICDSA image on a three-point scale. Patient tolerance was assessed from verbal descriptions. Cohen's kappa was used to determine interobserver agreement and descriptive statistics were used to summarize patient experience. Interobserver agreement ranged from fair to excellent, with most being good or excellent. Three patients (21.4%) could not tolerate the whole procedure and nine patients (64.3%) reported discomfort during the CO2 DSA procedure. CO2 DSA image quality was better for the thigh than the distal runoff and pelvic regions. Our results showed that selective CO2 DSA cannot replace ICDSA as a routine diagnostic tool for PAOD because it does not give images of comparative quality

    FoodWise: Food Waste Reduction and Behavior Change on Campus with Data Visualization and Gamification

    Full text link
    Food waste presents a substantial challenge with significant environmental and economic ramifications, and its severity on campus environments is of particular concern. In response to this, we introduce FoodWise, a dual-component system tailored to inspire and incentivize campus communities to reduce food waste. The system consists of a data storytelling dashboard that graphically displays food waste information from university canteens, coupled with a mobile web application that encourages users to log their food waste reduction actions and rewards active participants for their efforts. Deployed during a two-week food-saving campaign at The Hong Kong University of Science and Technology (HKUST) in March 2023, FoodWise engaged over 200 participants from the university community, resulting in the logging of over 800 daily food-saving actions. Feedback collected post-campaign underscores the system's efficacy in elevating user consciousness about food waste and prompting behavioral shifts towards a more sustainable campus. This paper also provides insights for enhancing our system, contributing to a broader discourse on sustainable campus initiatives
    • …
    corecore